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Abstract: Lung cancer is the leading cause of death in cancer patients, and microwave ablation
(MWA) has been extensively used in clinical treatment. In this study, we characterized the spectra
of MWA-treated and untreated lung squamous cell carcinoma (LSCC) tissues, as well as healthy
lung tissue, and conducted a preliminary analysis of spectral variations associated with MWA
treatment. The results of characteristic spectral analysis of different types of tissues indicated
that MWA treatment induces an increase in the content of nucleic acids, proteins, and lipid
components in lung cancer tissues. The discriminant model based on the principal component
analysis - linear discriminant analysis (PCA-LDA) algorithm together with leave-one-out cross
validation (LOOCV) method yield the sensitivities of 90%, 80%, and 96%, and specificities of
86.2%, 93.8%, and 100% among untreated and MWA-treated cancerous tissue, and healthy lung
tissue, respectively. These results indicate that Raman spectroscopy combined with multivariate
analysis techniques can be used to explore the biochemical response mechanism of cancerous
tissue to MWA therapy.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Lung cancer is the most common type of cancer and the leading cause of cancer death [1].
In 2015, the number of new lung cancer cases and deaths reached 733,300 and 610,200 in
China, respectively [2]. Current treatment modalities for lung cancer, such as radiotherapy,
chemotherapy, adjuvant and surgical resection [3], are highly traumatic procedures that carry a
high therapeutic risk for some patients with poor cardiorespiratory function. Therefore, a safer,
more effective and minimally invasive treatment method for improving the treatment of lung
cancer patients is required. Thermal ablation with microwave or radiofrequency energy has been
used as an effective treatment modality for unresectable lung tumors, as well as primary and
secondary thoracic malignancies [4–6]. Microwave ablation (MWA) is a local thermal ablation
technique that transmits high-frequency electromagnetic waves (915 and 2450 MHz) to the
tumor tissue through the antenna, causing oscillation of the electric dipole of water molecules
[7–9]. Kinetic energy from the water molecules is then transferred neighboring tumor molecules,
resulting in a rapid increase in the tissue temperature to above 60°C, thus inducing irreversible
coagulation necrosis of the tissue in the central ablation zone [7,10]. This ablation technique has
significant advantages of flexible application in different treatment strategies, good tolerance,
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and the potential to create necrotic areas reproducibly [9]. Moreover, MWA may be less affected
by the heat-sink effect than other thermal ablation methods [11].

The biochemical responses of cancerous tissue to MWA treatment can be further elucidated by
studying the molecular changes induced by the thermal effects by comparison of tissues pre- and
post-therapy. Raman spectroscopy is an ideal technique for this type of study in that it can provide
a “fingerprint” of the structure and conformation of molecule [12–16]. This information can be
used to improve the pathological and biochemical interpretation of tissue samples, as well as the
ability to identify subtle biochemical variations with high sensitivity and specificity [17–24]. To
clarify the biochemical mechanisms of cancer treatment, Fox et al. used Raman spectroscopy
combined with multivariate analysis to classify normal and cancerous skin tissue, and evaluated
the differences between tissues treated with high energy CO2 laser and untreated tissue [25]. In
studies of the spectral variations of breast cancer tissues pre- and post-photodynamic therapy
in animal models, Fontana et al. revealed the underlying mechanisms for the variations of
biochemical components in cancerous tissues after PDT treatment [26]. Raman spectroscopy has
also been used for prognostic evaluations, such as in vitro radiation responses in human tumor
cells, radiotherapy responses in patients with cervical cancer, and radiation damage in mouse
brain [27–29].

Followed by our previous studies [30], we used Raman spectroscopy combinedwithmultivariate
analysis techniques to elucidate the biochemical response of lung squamous cell carcinoma
(LSCC) tissue to MWA therapy. Compositional changes were analyzed by identifying significant
spectral variations between the cancerous tissues in the pre-therapy group (Pre-MWA group)
and post-therapy group (Post-MWA group); healthy lung tissues in Healthy Group were used
for further comparisons. The spectral dataset obtained was further analyzed using principal
component analysis-linear discriminant analysis (PCA-LDA) to explore the biochemical response
of the cancerous tissue to MWA treatment. The results revealed a novel and objective method for
the evaluation of the multiple biochemical variabilities in the responses of lung cancer tissue
during MWA treatment. This method may represent the basis of new Raman-based analytical
techniques for improved clinical efficacy.

2. Experimental

2.1. Tissue sample preparation

Tissue sections in Healthy Group (n= 6, 20 µm thick) were bought fromAlenabio (Xi’an, Shaanxi,
China), which was collected from clinical autopsy and kept in −80°C frozen environment. The
commercial usage is approved under Institution Review Board (IRB) and Health Insurance
Portability and Accountability Act (HIPAA) approved protocols. LSCC tissues (n= 12) were
obtained from Jiangsu Cancer Hospital (Nanjing, China), from six male patients undergoing
MWA treatment in the clinic. All experiments were performed in accordance with the guidance
from Institutional Review Board/Independent Ethical Committee (IRB/IEC) in both Northwest
University and Jiangsu Cancer Hospital, and approved by the ethics committee at Jiangsu
Cancer Hospital. Informed consents were obtained from all of human participants in this
study. Tissues in the Pre-MWA group were acquired by needle biopsy. After histopathological
confirmation, patients received clinical MWA treatment (2145 MHz at 30 W for 5 min) delivered
using the ablation system from Nanjing Weijing Jiuzhou Medical Equipment Research Institute.
Approximately 24 h later, tissues in Post-MWA group were acquired by needle biopsy from the
location of MWA treatment and prepared for histopathological analysis and Raman spectroscopy
investigations.
Immediately after tissue collection, the LSCC tissue samples obtained from the untreated

and MWA-treated groups were embedded in an optimal cutting temperature (OCT) medium
(Surgipath FSC 22, Leica Biosystems, USA) and frozen with liquid nitrogen for better preservation
of its native morphology. Transverse sections (20 µm thick) were prepared on gold-coated
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glass substrates (BioGold 63479-AS, Electron Microscopy Sciences, USA), which is used to
eliminate the background fluorescence from the microscope slides and optics for spectroscopic
measurement. Consecutive sections (5 µm thick) were hematoxylin and eosin (H&E) stained to
facilitate comparison of the spectral measurement results with known histopathology. The frozen
sections were immersed in an acetone cooling bath for dehydration and stored at −20°C until
they were transported to Northwest University, Xi’an, Shaanxi, China for spectroscopy studies.
The tissue sections were thawed 30 min prior to spectroscopic analysis or further histological
processing.

2.2. Raman spectroscopy

The equipment used for Raman spectroscopy has been described in detail in previous studies
[31–33]. Briefly, theWITecAlpha500 confocalmicro-Raman spectroscopy system (WITecGmbH,
Germany) was used for single spectrum acquisition with a 633 nm He-Ne laser (35 mW, Research
Electro-Optics, Inc., USA) as the excitation source. A 100× microscope objective (NA= 1.25,
EC Epiplan-Neofluar, Zeiss, Germany) was used for spectral excitation and measurements. A
total of twenty-five spectra were used for averaging and normalization in healthy lung tissue
sections, while forty spectra were used in the Pre-MWA and Post-MWA groups, respectively.
Such spectral information is recorded by a spectrometer (UHTS300, WITec GmbH, Germany)
with a resolution of approximately 3 cm−1 incorporating a 600 mm−1 grating blazed at 500 nm
with a back-illuminated deep-depletion charge coupled device camera (Du401A-BR-DD-352,
Andor Technology, UK) working at −60°C with a 1.5 s acquisition time for a single spectrum.

2.3. Data analysis

The acquired spectral data were pre-processed using WITec Project 4 (WITec GmbH, Germany)
following our previously generated protocols [31–33], including a nine-order polynomial fit to
subtract the spectral background and a five-order Savitzky-Golay smoothing. Each pre-processed
spectrum was then normalized by the integrated area under the curve in the range from 600
to 1800 cm−1, and from 2800 to 3000 cm−1 to eliminate interference from unrelated factors
and provide a superior comparison of the spectral features of different tissues. Subsequently,
the data matrices containing all spectra were mean-centered and used for PCA and LDA in
multivariate analysis. To improve the effectiveness of the analysis and reduce the complexity of
the interpretation of our results, one-way ANOVA was used to identify the most diagnostically
significant PCs (P< 0.01) from the first 10 significant PCs to better classify the three types of
tissue samples [34]. In addition, Fisher’s least significant difference (LSD) post-hoc multiple
tests were used to analyze the pairwise differences between different types of tissue [35]. LDA
is a supervised method of analysis adopted to identify an optimal projection direction that
maximizes differences between samples in different groups and minimizes differences between
samples within the same group [36–38]. Significant PC scores were used as the input variable
for LDA to generate a diagnostic algorithm [39]. To verify the performance of the discriminant
model based on the PCA-LDA algorithm for different types of tissues classification, we used
leave-one-out cross validation (LOOCV) method to further classify all spectra, while reducing
the risk of over-fitting. The discriminant results based on Raman spectroscopy and the PCA-LDA
algorithm was compared with the standard histopathological examination results to determine
the sensitivity, specificity and overall accuracy of the discriminant model. The receiver operating
characteristic (ROC) curves were used to further evaluate the overall discriminatory performance
of Raman spectroscopy together with multivariate analysis method for different types of tissues.
All statistical analyses were performed using MATLAB R2015b software (Mathworks. Inc.,
Natick, MA, USA).
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3. Results and discussion

3.1. Raman spectral analysis

The mean spectra ± standard deviation (SD) acquired from the cancerous tissues in the Pre-MWA
group and Post-MWA groups, as well as those obtained from healthy lung tissue are shown in
Fig. 1(a). The main characteristic peaks observed in both the Pre-MWA group and Post-MWA
groups at the following locations (with their respective tentative biochemical assignments shown
in parentheses) [38,40–47]: 669 cm−1 (T, G of nucleic acids); 750 cm−1 (symmetric breathing
of tryptophan); 1002 cm−1 (C-C symmetric ring breathing of phenylalanine); 1123 cm−1 (C-N
stretching of proteins); 1248 cm−1 (β-sheet conformation of collagen and proline); 1316 cm−1

(CH2CH3 bending of collagen); 1448 cm−1 (CH2CH3 bending of collagen, CH2 bending of
phospholipids); 1552 cm−1 (C=C stretching of tryptophan); 1608 cm−1 (C=C stretching of
phenylalanine); 2878 cm−1 (CH2 asymmetric stretch of lipids and proteins); and 2927 cm−1 (CH2
anti-symmetric stretching of lipids). However, the characteristic peaks in healthy lung tissues
were observed at the following locations: 860 cm−1 (C=O stretching of phosphatidic acid) [32];
933 cm−1 (C-C stretching skeletal of collagen backbone, hydroxyproline, proline) [42]; 1002
cm−1, 1248 cm−1, and 1454 cm−1 (overlapping asymmetric CH3 bending and CH2 scissoring of
collagen and phospholipids) [48]; 1552 cm−1, and 1665 cm−1 (amide I band of collagen) [42];
and 2878 cm−1 and 2940 cm−1 (C-H vibrations in lipids and proteins) [49]. Furthermore, the
normalized intensity of the nucleic acid peak at 669 cm−1, tryptophan at 750 and 1552 cm−1,
phenylalanine at 1002 and 1608 cm−1, collagen at 1248 cm−1, and the lipids peaks at 1448, 2878
and 2927 cm−1 in the Post-MWA group were significantly higher than those in the Pre-MWA
group.

To more intuitively compare the biochemical variations of cancerous tissues in the Pre-MWA
group and Post-MWA groups, the normalized spectrum of the Pre-MWA group was subtracted
from the normalized spectrum of the Post-MWA group as shown in Fig. 1(b). The positive peaks
appearing in the difference spectrum were found to be basically consistent with the peak positions
in Fig. 1(a), including those at 669 cm−1 (nucleic acid), 750, 1002, 1248, 1552, 1608, and 1665
cm−1 (proteins) and 1448, 2878, and 2927 cm−1 (lipids). These positive peaks in the differential
spectrum indicated that the contents of nucleic acid, tryptophan, phenylalanine, collagen, and
lipid components in the Post-MWA group were higher than those in the Pre-MWA group.

The features of both the characteristic spectra and the differential spectra indicated that MWA
treatment induced an increase in the contents of nucleic acid, proteins and lipid components
in cancerous tissues. Significant increases in nucleic acid and protein levels in the cancerous
tissues in the Post-MWA group may be associated with the destruction of cancer architecture and
malignance in the ablation zone [10,26,30]. MWA treatment causes mechanical cell damage,
affects the tumormicroenvironment, and releases a variety of immunogenic intracellular substrates
(such as RNA, DNA, heat shock proteins and high mobility group protein B1) that activate
innate immune system [10]. Recent studies have confirmed that circulating histones act as highly
tissue-damaging mediators released into the extracellular space following cell death caused by
thermal ablation [50]. This suggests that the increased protein levels in the Post-MWA group may
also be associated with the biological events such as the release of circulating histones induced
by thermal ablation. The presence of large amounts of protein in the Post-MWA group can also
be explained by the tumor cell destruction pathways activated by MWA therapy. In particular, the
significant increase in the collagen content (1248 cm−1 and 1665 cm−1) in the cancerous tissue in
the Post-MWA group as the positive response of MWA therapy. The degradation and redeposition
of collagen and structural changes will promote tumor invasion, angiogenesis and migration, and
collagen changes will trigger a series of biological events by releasing biochemical signals [51].
Thus, change (increase) in collagen content may a positive indicative of MWA efficacy.
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Fig. 1. (a) The mean± standard deviations (SD) of normalized spectra in cancerous tissue of
the Pre-MWA group, Post-MWA group and healthy group, shading area represents standard
deviations. (b) The differential spectra calculated from the mean Raman spectra between the
cancerous tissue of Pre-MWA group and Post-MWA groups.

4. PCA-LDA analysis

To capture all significant Raman spectral features for MWA treatment evaluation, we conducted a
multivariate analysis including all recorded biochemical variations to distinguish tissue types
under investigation. The PCA-LDA algorithm was used to determine the most diagnostically
significant features in the spectral dataset and further investigation of biochemical variations
in different tissues. The Raman spectra of the fingerprint region (600–1800 cm−1) and the
high-wavenumber region (2800–3000 cm−1) acquired from the three types of tissue samples were
calculated by PCA to obtain the corresponding PC scores and loadings. One-way ANOVA and
Fisher’s LSD post-hoc multiple tests showed that PC1, PC2, and PC3 were the most diagnostically
significant PCs at the 99% confidence level. These scores were then plotted to visualize the
spectral distribution differences between the tissue types. The scatter plot of PC1 and PC2
shown in Fig. 2(a) revealed a clear separation between cancerous tissue and healthy lung tissue.
Basically, the cancerous tissues in the Pre-MWA group and Post-MWA groups were present
on the negative axis of PC1, whereas the healthy lung tissue was located predominantly on the
the positive axis. In the same way, the scatter plots of PC1 and PC3, PC2 and PC3 shown in
Fig. 2(b) and (c) were also used to separate different tissue spectra. The vast majority of the
spectra on the positive axis of PC2 belonged to cancerous tissue, whereas the spectra of healthy
lung tissue and cancerous tissue in the Pre-MWA group were located mainly on the negative axis.
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It is worth noting that the zero line of PC3 is mainly used to distinguish the cancerous tissue
spectrum of the Pre-MWA group and Post-MWA groups. Most of the spectra in the Post-MWA
group were located on the positive axis of PC3, while most of the spectra in the Pre-MWA group
were distributed on the negative axis.

Fig. 2. Scatter plots of the diagnostically significantly principal components scores for the
three types of tissue, (a) PC1 versus PC2; (b) PC1 versus PC3; and (c) PC2 versus PC3.

In addition to distinguishing the spectra of different types of tissues, PCA can also be used to
extract molecular feature information related to classification based on the loading corresponding
to each PC [52]. The loadings of PCA contain both positive and negative features, which are
meaningful only for the assignment of the corresponding PCA scores [53]. The loadings of
PC1, PC2, and PC3 are shown in Fig. 3. By comparison with the existing Raman peaks in the
single spectrum of the tissue, the negative and positive features in the loading of each PC can be
considered to be derived from variations in the biochemical molecules in the tissue. The first
most significant PC accounts for the largest variance (76.9%) in the Raman spectral dataset. The
loading of PC1 was basically above the zero line, with obvious peak positions in the loadings at
860, 933, 1248, 1454, 1665, 2878, and 2940 cm−1, which can be attributed to the characteristic
bands of phosphatidic acid, collagen, and lipid components. The features of the PC1 loadings are
extremely similar to the spectral characteristics of healthy lung tissue, suggesting that PC1 can be
used primarily to differentiate the healthy group to other two groups. This is consistent with the
distribution the spectra of healthy lung tissue shown in the scatter plot in Fig. 2(a) and (b).
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Fig. 3. The PCA loading of PC1, PC2 and PC3.

PC2 explained the total variance of 18.7% of the Raman spectral dataset. The positive peaks
of the corresponding loading can be attributed to biochemical components such as nucleic acids
at 669 cm−1, tryptophan at 750 and 1552 cm−1, phenylalanine at 1002 and 1608 cm−1, protein
at 1123 cm−1, collagen at 1248 cm−1, Guanine (N7, B, Z-marker) at 1363 cm−1 [54], while
the negative peaks can be attributed to phosphatidic acid at 860 cm−1 and lipids at 2940 cm−1.
Comparison of the loading of PC2 with the characteristic spectrum of cancerous tissue revealed
marked similarities between the two groups of spectra in the low-wavenumber region of 600–1800
cm−1. In addition, the two negative characteristic peaks at 860 and 2940 cm−1 in the loading
were derived from healthy lung tissue. These observations indicate that the positive features of
PC2 extraction are derived mainly from cancerous tissues, whereas the negative features are due
mainly to the spectral contribution of healthy lung tissue.
PC3 represented 1.2% of the total variance in the spectral dataset. Although the loadings of

PC3 are distributed on both sides of the zero line, the most diagnostically significant features are
located in the positive loading, which are 669, 750, 1002, 1448, 1552, 2878, and 2920 cm−1 (C-H
stretching bands mostly found in lipids) [55]. These peaks indicate that the positive characteristics
of PC3 loading are mainly contributed by nucleic acid, protein, and lipid components. Combining
the positive and negative score distribution of PC3 shown in Fig. 2 revealed that the cancerous
tissue of Post-MWA group contains more nucleic acid, protein and lipid biochemical components.
Moreover, this also shows that PCA loading can represent underlying biochemical differences
between different tissues.

To gain a more comprehensive understanding of the information contained in the PCA loading,
a simple comparison was applied. The loading of PC3 was compared to the differential spectrum
obtained by comparison of the spectra of the cancerous tissue in the Pre-MWA group and
Post-MWA groups shown in Fig. 1(b). There was a high degree of similarity between the two
groups of spectra, which indicated that the content of nucleic acid, protein and lipid components
in cancerous tissues increased after MWA treatment. This further confirms the reliability of PCA
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in describing the subtle differences in biochemical molecules between the cancerous tissues in
the Pre-MWA group and Post-MWA groups.

Therefore, our findings indicate a correlation between PCA loading and the spectral distribution
in the score scatter plot. PCA loading contains both positive and negative features, which
can be assigned to different biochemical groups through the reference spectrum. The positive
characteristics in the loading represent the relatively large contribution of the relevant biochemical
components (e.g., nucleic acid at 669 cm−1, proteins at 750, 1001, 1123, 1248, 1552, 1608 cm−1

and lipids at 1448, 1665, 2878, 2920, 2940 cm−1) in the loading of the corresponding PCs, which
also could be found in the negative peak of loading. Thus, PCA can be used effectively to analyze
the molecular composition and underlying biochemical differences in spectral datasets, and can
provide analysis results similar to the difference spectrum.
To incorporate the most significant spectral features into the evaluation of lung cancer MWA

therapy, several significant PCs identified by one-way ANOVAwere used as the input variables for
LDA to generate an effective tissue discriminant model. Figure 4 shows the linear discriminant

Fig. 4. (a) represents the scatter plot of linear discriminant scores for three types of tissue;
(b) displays two-dimensional ternary plot of the posterior probabilities belonging to the
Pre-MWA group, Post-MWA group and healthy lung tissue calculated from the Raman
spectral data set, using the PCA-LDA discriminant model combined with LOOCV method.
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scores and posterior probabilities of different types of tissue obtained by the tissue classification
model based on the PCA-LDA algorithm. Figure 4(a) shows that the spectra of healthy lung
tissue are distributed in the negative side of the first discriminant function, and all the spectral
distributions of cancerous tissue are in the positive side. The zero line of the second discriminant
function clearly separates the Post-MWA group from the Pre-MWA group. The spectra of the
Post-MWA group tissue are mainly in the negative axis, and the spectral distribution in the
positive axis is dominated by the spectra from the Pre-MWA group. The posterior probability
values were calculated and are shown as a 2-D ternary scatter plot in Fig. 4(b).

In the LOOCV confusion matrix (Table 1), there was a partial misclassified spectrum between
the cancerous tissue in the Pre-MWA group and Post-MWA groups that indicated a spectral
similarity between the two groups of only 10%–20%. The misclassification of the spectra between
the Pre-MWA group and Post-MWA groups may be caused by the reason that the randomly
acquired spectra is from the tissue of interest measured areas of the post MWA treated sample that
were less affected or treated at all. The differential sensitivity of the discriminant model for the
Pre- and Post-MWA groups and healthy lung tissue was 90%, 80%, and 96%, respectively, and
the specificity was 86.2%, 93.8%, and 100%, respectively. The overall classification accuracy
was 87.6%, indicating that the discriminant model has good performance in separating different
types of tissues. Finally, to further evaluate the classification performance of the discriminant
model using spectral data of different types of tissues, the ROC curves of the three types of
tissues generated by varying the threshold of the posterior probability (Fig. 5). The integrated

Table 1. Discrimination results obtained by Raman spectroscopy of different types of tissues
using the classification model based on PCA-LDA algorithms with leave-one-out cross validation

method. Actual: Pathological diagnosis results. Predict: Raman spectra combined with the
classification model obtained the diagnostic results.

Actual\Predict Pre-MWA group Post-MWA group Healthy group

Pre-MWA group 36 4 0

Post-MWA group 8 32 0

Healthy group 1 0 24

Fig. 5. The ROC curves of discrimination results for the Raman spectral classification of
Pre-MWA group, Post-MWA group and healthy lung tissue based on PCA-LDA algorithms
together with the LOOCV method. AUC: the areas under the ROC curves.
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areas under the ROC curves are 0.959, 0.968, and 1 for multiclass discrimination among the
cancerous tissue of Pre-MWA group and Post-MWA groups, and healthy lung tissue, respectively.
This result further demonstrates that Raman spectroscopy combined with multivariate analysis
methods can be used to accurately distinguish different types of tissues.

5. Conclusion

In conclusion, this study indicates that significant Raman biochemical differences could be
observed among tissue in healthy, Pre-MWA and Post-MWA groups. Changes in the biochemical
composition of tissues could be attributed to cellular mechanical necrosis caused by microwave
thermal ablation. Combined with multivariate analysis techniques, the spectral character in
the Pre-MWA group and Post-MWA groups were further discriminated by PCA loading and
score plots, which highlight some major spectral variations after MWA treatment. We also
confirmed that the tissue classification model based on the PCA-LDA algorithm together with
LOOCV method could accurately discriminate between healthy lung tissue, and those of the
cancerous tissues in the Pre-MWA group and Post-MWA groups for exploring the therapeutic
response of tumor tissues accurately, and study related biochemical mechanisms based on
specific compositional changes. Thus, the results of our study highlight the feasibility of Raman
spectroscopy-based analytical approach for therapeutic monitoring assessments and pathological
diagnostic studies.
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